prerequisites:
Isosceles triangle theorem (proof)
Exterior angle property of a triangle (proof)
Proof:
Let \triangle ABC be a right triangle, right angled at B, with the given length of hypotenuse AC and a side BC. If possible, let \triangle A'BC be another right triangle, right angled at B, such that A'C = AC. Since, \triangle A'BC is also right angled at B, therefore A' lies on the line AB. Let us first assume that AB < A'B
Now in \triangle ACA',
\qquad\quad AC = A'C\qquad\qquad\qquad\qquad\qquad\;\;\;\text{(given)}
Hence \triangle ACA' is an isosceles triangle. Thus, by the isosceles triangle theorem,
\qquad\quad\angle CAA' = \angle CA'A\qquad\qquad\qquad\qquad\cdots\text{(1)}
Now in \triangle ABC,
\qquad\quad\angle B = 90^o\\ \qquad\quad\angle BCA = \theta\\ \therefore\;\quad\;\;\angle CAA' = 90^o+\theta\qquad\qquad\qquad\qquad\text{(By exterior angle property of a triangle)}
\Rightarrow\quad\;\;\angle CA'A = 90^o + \theta\qquad\qquad\qquad\qquad\text{(from $(1)$)}
In \triangle ACA', let S be the sum of all the interior angles,
\begin{align}\therefore\quad\;\; S &= \angle CAA'+\angle CA'A + \angle ACA'\\ &= 90^o+\theta+90^o+\theta+\angle ACA'\\ &= 180^o + 2\theta + \angle ACA'\\ &> 180^o\end{align}
But this is a contradiction, as by angle sum property of a triangle, S = 180^o.
Hence, AB \not< A'B.
By similar analysis, taking \triangle A'BC instead of \triangle ABC, it can be shown that AB \not> A'B.
Hence AB = A'B. Therefore, \triangle ABC is unique.
Q.E.D.
No comments:
Post a Comment